877 research outputs found

    Transient-forced convection film boiling on an isothermal flat plate

    Get PDF
    An approach for the solution of transient-forced convection film boiling on an isothermal flat plate using the boundary layer model is developed. The similarity variables are used to convert the governing partial differential equations to ordinary ones. The results of numerical solutions of these ordinary equations indicate that the transient process can be classified as one-dimensional conduction, intermediate, and the steady state regions. The time required for the one-dimensional conduction and the time necessary to attain a steady state condition are obtained. The influence of interfacial shear is seen to be negligible while the Prandtl Number and the ratio (C sub p delta T divided by h sub fg times Pr) have major influence. The use of local similarity approximations for the intermediate regime facilitates prediction of complete boundary layer growth. Using the ratio of time at any instant to the steady state time as abscissa, the curves representing the boundary layer growth can be merged into a single mean curve within 5 percent. Further, the analysis shows that the average rate of heat transfer during transient is 50 to 100 percent higher than those at steady state. The average rate of vapor convected away is 10 to 15 percent lower than at steady state while the average rate of accumulation to form the vapor layer is 1 to 14 times larger. Further, the total heat transferred during transient increases and the evaporation decreases for increasing values of C sub p delta T divided by h sub fg times P

    Effect of cross-redistribution on the resonance scattering polarization of O {\sc i} line at 1302 \AA\,

    Full text link
    Oxygen is the most abundant element on the Sun after Hydrogen and Helium. The intensity spectrum of resonance lines of neutral Oxygen namely O {\sc i} (1302, 1305 and 1306 \AA\,) has been studied in the literature for chromospheric diagnostics. In this paper we study the resonance scattering polarization in the O {\sc i} line at 1302 \AA\, using two-dimensional radiative transfer in a composite atmosphere constructed using a two-dimensional magneto-hydrodynamical snapshot in the photosphere and columns of the one-dimensional FALC atmosphere in the chromosphere. The methods developed by us recently in a series of papers to solve multi-dimensional polarized radiative transfer have been incorporated in our new code POLY2D which we use for our analysis. We find that multi-dimensional radiative transfer including XRD effects is important in reproducing the amplitude and shape of scattering polarization signals of the O {\sc i} line at 1302 \AA\,

    Electric fields and double layers in plasmas

    Get PDF
    Various mechanisms for driving double layers in plasmas are briefly described, including applied potential drops, currents, contact potentials, and plasma expansions. Some dynamical features of the double layers are discussed. These features, as seen in simulations, laboratory experiments, and theory, indicate that double layers and the currents through them undergo slow oscillations which are determined by the ion transit time across an effective length of the system in which double layers form. It is shown that a localized potential dip forms at the low potential end of a double layer, which interrupts the electron current through it according to the Langmuir criterion, whenever the ion flux into the double is disrupted. The generation of electric fields perpendicular to the ambient magnetic field by contact potentials is also discussed. Two different situations were considered; in one, a low-density hot plasma is sandwiched between high-density cold plasmas, while in the other a high-density current sheet permeates a low-density background plasma. Perpendicular electric fields develop near the contact surfaces. In the case of the current sheet, the creation of parallel electric fields and the formation of double layers are also discussed when the current sheet thickness is varied. Finally, the generation of electric fields and double layers in an expanding plasma is discussed

    Imperilled waterscapes

    Get PDF
    This paper examines the historical waterscapes of Bengaluru, now imperilled by development. Earlier a garden city, the agrarian landscape of Bengaluru was formerly supplied with water from an interconnected lake system. This system has since been fragmented due to urbanization and changes in land cover, impacting local institutions and livelihoods dependent on the lakes. In this paper, we use the case of the city’s largest lake, Bellandur, to demonstrate the transformation of the waterscape from an open semi-arid landscape pre-dating the city into an agrarian water-dependent landscape characterized by flows of water in pre-colonial and colonial Bengaluru, and finally into a concretized landscape and the individualization of lakes in the “modern” city. Claims to and associations with the lake ecosystem have altered through changing hydrological, institutional, and social relations, leading to shifts in imaginations of the lake as well

    Center to limb observations and modeling of the Ca I 4227 A line

    Full text link
    The observed center-to-limb variation (CLV) of the scattering polarization in different lines of the Second Solar Spectrum can be used to constrain the height variation of various atmospheric parameters, in particular the magnetic fields via the Hanle effect. Here we attempt to model non-magnetic CLV observations of the Q/IQ/I profiles of the Ca I 4227 A line recorded with the ZIMPOL-3 at IRSOL. For modeling, we use the polarized radiative transfer with partial frequency redistribution with a number of realistic 1-D model atmospheres. We find that all the standard FAL model atmospheres, used by us, fail to simultaneously fit the observed (II, Q/IQ/I) at all the limb distances (μ\mu). However, an attempt is made to find a single model which can provide a fit at least to the CLV of the observed Q/IQ/I instead of a simultaneous fit to the (II, Q/IQ/I) at all μ\mu. To this end we construct a new 1-D model by combining two of the standard models after modifying their temperature structures in the appropriate height ranges. This new combined model closely reproduces the observed Q/IQ/I at all the μ\mu, but fails to reproduce the observed rest intensity at different μ\mu. Hence we find that no single 1-D model atmosphere succeeds in providing a good representation of the real Sun. This failure of 1-D models does not however cause an impediment to the magnetic field diagnostic potential of the Ca I 4227 A line. To demonstrate this we deduce the field strength at various μ\mu positions without invoking the use of radiative transfer.Comment: 20 pages, 10 figures, Accepted for publication in Ap
    corecore